

Digital Twin Applications in Tourism Destination Management: Predictive Modelling for Tourist Flow and Resource Optimization

M. Keertana^{1*} and C. Vijay Vishnu Kumar²

^{1*2}Department of Commerce, Faculty of Science and Humanities
SRM Institute of Science and Technology, Tamil Nadu, India

E-mail: vijayvic@srmist.edu.in

*Corresponding Author: keerthikowski1210@gmail.com

(Received 1 September 2025; Revised 7 October 2025; Accepted 25 October 2025; Available online 12 November 2025)

Abstract – Tourism destinations across the globe are grappling with growing visitor numbers, congestion, and sustainability challenges. Traditional management strategies, which often rely on historical or static data, have proven insufficient in addressing these dynamic issues. Digital Twin (DT) technology offers an innovative pathway by creating real-time, virtual replicas of destinations that combine diverse data streams, simulate ongoing interactions, and generate predictive insights for managers. This study presents a conceptual framework for applying digital twins in tourism management, structured into five layers: the Input Layer, Digital Twin Core, Predictive Analytics Engine, Decision Support System, and Outcomes. Built on secondary data and aligned with Structural Equation Modelling (SEM) principles, the framework illustrates how raw information can be transformed into actionable strategies. Findings suggest that DTs improve the accuracy of tourist flow forecasting, enable smarter decision-making, and enhance sustainability by optimizing the use of resources. The research contributes to tourism management by connecting technological innovation with sustainability goals and lays the groundwork for future empirical testing.

Keywords: Digital Twin, Tourism Destination Management, Predictive Modelling, Resource Optimization, Sustainability

I. INTRODUCTION

Tourism has long been recognized as a powerful force for global economic growth and cultural exchange, contributing significantly to the world's GDP and creating millions of jobs across industries such as hospitality, transportation, and heritage management. However, the surge in international tourist arrivals over recent decades has created serious challenges that go far beyond the benefits of increased revenue. Overcrowding in popular destinations, the strain on infrastructure, and the depletion of natural and cultural resources have all become pressing concerns. Scholars such as Gossling, Scott, and Hall (2020) point out that these challenges are particularly visible in urban and heritage-rich locations, where environmental pressures and congestion reduce not only the quality of visitor experiences but also the overall well-being of local communities. In a similar vein, Milano, Cheer, and Novelli (2019) describe "overtourism" as an urgent global issue, drawing attention to cases such as Venice, Barcelona, and Bali where excessive visitor numbers have eroded cultural integrity, disrupted local lifestyles, and placed unsustainable pressure on ecosystems. These examples illustrate the shortcomings of traditional

management practices, which are often reactive and grounded in static, historical data rather than the dynamic, real-time insights required for effective governance in a rapidly changing tourism landscape.

In response to these challenges, tourism scholars and practitioners have increasingly turned to digital innovation as a means of reshaping destination management, and one of the most promising developments in this area is the concept of the Digital Twin (DT). Originally introduced in the field of industrial engineering by Grieves (2019), a digital twin is best understood as a real-time, virtual replica of a physical system that can continuously update itself using live data. Applied to the tourism sector, DTs have the capacity to integrate vast streams of information from diverse sources, including IoT sensors that monitor foot traffic, GPS mobility data that tracks visitor flows, reservation and ticketing systems that reveal demand patterns, and even social media platforms that provide insights into traveller sentiment and behavior. When combined within a dynamic digital model, this data offers destination managers the ability to anticipate surges in crowd density, adjust mobility networks, and deploy infrastructure and services more efficiently. Cheng, Tan, and Wong (2022), for example, demonstrate how Singapore's National Digital Twin has been leveraged to improve mobility planning and crowd control in real time, showing the practical advantages of embedding this technology within urban tourism contexts.

Beyond the immediate goal of managing tourist flows, DTs also contribute to broader sustainability imperatives that are now central to tourism development. By aligning real-time demand with resource allocation, digital twins can help destinations reduce unnecessary energy consumption, cut carbon emissions, and optimize the use of critical utilities such as water and transport. Evidence from the Dubai Expo 2020 report (2021) shows how DT simulations supported the efficient distribution of water and electricity across the massive event site, ensuring minimal waste while maintaining service quality. Similarly, research from China highlights how digital twins have been deployed in scenic areas to balance ecological conservation with visitor management (Zhang & Li, 2020). These examples underscore the dual role of DTs in enhancing both visitor

experiences and the long-term sustainability of destinations. Nevertheless, significant obstacles remain in the way of widespread adoption, including the high costs associated with implementation (OECD, 2022), ongoing debates around data privacy and surveillance ethics (Gretzel, Sigala, Xiang, & Koo, 2022), and the absence of standardized governance frameworks to guide responsible deployment (Sigala, 2020). Even so, the growing body of evidence strongly suggests that digital twins hold transformative potential as tools for predictive modelling, proactive governance, and sustainable resource management in the tourism sector.

II. LITERATURE REVIEW

A. Digital Twins and Smart Destinations

The concept of digital twins (DTs), originally rooted in manufacturing and urban planning, has steadily found its way into tourism and destination management, where it is increasingly seen as a vital enabler of smart tourism development. Florido-Benítez (2024) describes DTs as a foundational layer for smart tourist destinations, arguing that their capacity to continuously ingest and process diverse forms of data-ranging from IoT sensors and geospatial mapping to service-related datasets-creates opportunities to model scenarios such as crowding, mobility bottlenecks, and fluctuations in service quality. These simulations can be aligned with broader objectives, including improving the quality of life for residents who are often directly affected by tourism pressures. Similarly, Faliagka *et al.*, (2024) propose an open DT framework that draws from smart mobility systems, emphasizing standardized data models and API layers that can be easily transferred to tourism contexts where visitor flow optimization is critical. Large-scale cross-domain initiatives such as the European Commission's Destination Earth (DestinE) demonstrate the potential of DTs even more clearly; by combining advanced Earth-system modelling, machine learning, and sector-specific applications, these platforms can be adapted to manage challenges such as overcrowding, extreme weather, and flood risks, all of which significantly influence visitation patterns. Taken together, these studies highlight that DTs extend far beyond technical experimentation, providing a governance-ready infrastructure that links digital transformation directly to destination resilience and sustainability.

B. Visitor-Flow Prediction and Simulation

One of the most direct applications of DTs in tourism lies in their ability to predict and simulate visitor flows, building on methodologies long explored in protected areas and urban mobility research. Stekerova *et al.*, (2022) review agent-based modelling (ABM) approaches, showing how rule-driven agents interacting with trail networks can replicate congestion dynamics in parks and heritage sites, thereby informing carrying capacity decisions. Expanding on this, Makinoshima *et al.*, (2022) demonstrate how real-world observation data can be combined with microscopic simulations to generate short-term crowd-flow forecasts,

even when sensor coverage is incomplete, an approach that maps seamlessly onto DT infrastructures. At the urban scale, Kaziyeva *et al.*, (2023) show how pedestrian ABMs can replicate diurnal movement patterns across neighborhoods, offering a critical tool for multi-district-destination twins. Within indoor attractions such as museums, Marzouk *et al.* (2022) provide evidence that DT-linked visitation and evacuation models can balance safety and experience outcomes simultaneously, suggesting that heritage sites in particular stand to benefit from these dual-optimization capabilities. From a data-supply perspective, Anda *et al.*, (2021) contribute by creating “digital twin travelers” through synthetic itineraries derived from aggregated mobile-phone data. This privacy-preserving technique enables accurate calibration of origin-destination matrices and stay-time distributions, both of which are essential for identifying peak congestion moments. Collectively, these studies establish predictive modelling as a central function of DTs, equipping destination managers with the foresight necessary for proactive interventions.

C. Data Architecture and Frameworks for DT-Driven Mobility

For DTs to move from conceptual promise to practical utility in destination management, robust data architecture is required, particularly architectures that ensure bidirectional flows between the physical and virtual environments. A recent systematic literature review (2025) observes that many tourism-focused DTs still rely heavily on one-way data transfers from the physical to the virtual, limiting their ability to provide adaptive management in real time. The authors argue for the development of cyber-physical feedback loops that would allow operational adjustments to flow back into the real world instantly. Complementing this, Aghaabbasi *et al.*, (2025) analyze DT systems in the domain of travel demand, advocating for integration of dynamic traffic assignment models, behavioral modelling, and edge-based sensing technologies-all of which are essential for rerouting visitors during peak congestion or unforeseen disruptions. Similarly, Biljecki and colleagues emphasize the potential of “perception-powered” urban DTs that combine volunteered geographic information with sensor data, offering new ways of mapping environmental comfort conditions such as shading or microclimate effects. Such approaches are particularly relevant in tourism corridors where extreme weather conditions can impact visitor safety and experience. These findings indicate that DTs in tourism require not only technological sophistication but also carefully designed data ecosystems that enable interoperability, feedback, and continuous adaptation.

D. Resource Optimisation and Sustainability Linkages

Beyond managing visitor flows, DTs are increasingly linked to the larger agenda of sustainability in tourism, particularly through the optimization of energy, water, and carbon footprints in public and tourism-related infrastructure. Recent studies of AI-enhanced DTs in urban contexts demonstrate

measurable efficiency gains when simulation-driven policies are applied to regulate utilities such as lighting, transport hubs, and HVAC systems in attractions. These reductions in energy demand and emissions highlight how DTs align with the goals of the so-called “twin transition,” which combines digital transformation with green practices as part of the EU’s long-term tourism strategy. The emphasis here is on interoperability, the creation of shared data spaces, and capacity-building in digital skills, all of which are seen as levers for achieving sustainable capacity management. Similarly, UN Tourism underscores the role of interoperable digital platforms as prerequisites for achieving sustainability in destination management, reinforcing the centrality of DTs in this effort. By linking operational efficiency with ecological responsibility, DTs do not simply serve as management tools; they become part of a broader governance framework that integrates sustainability principles into the everyday operations of destinations.

E. Real-World Exemplars Relevant to Destinations

Several global initiatives already provide practical evidence of how digital twins can support tourism management. Barcelona’s city-scale DT, for example, has been deployed to evaluate “15-minute city” interventions, simulate public space scenarios, and manage tourist hotspots, demonstrating its ability to support both urban planning and visitor management simultaneously. In the transport and port sectors, DTs have been leveraged to improve safety and efficiency, offering insights highly applicable to cruise-tourism destinations where large influxes of visitors can create significant urban congestion. Singapore’s “Cooling Singapore” initiative further illustrates the potential of climate-focused DTs by simulating microclimate conditions and guiding public-realm management in ways that could be easily adapted to tourism contexts, such as advising visitors on safer travel routes during extreme heat. These real-world cases underscore the flexibility of DTs across scales and functions, from crowd dispersion and mobility optimization to climate adaptation, thereby strengthening the case for their widespread adoption in tourism destination governance.

F. Methods that Underpin Predictive DTs for Destinations

The predictive power of DTs is supported by a range of modelling techniques that have been adapted to tourism contexts. Three families of methods recur most frequently: agent-based models (ABM), which simulate the behavior of individuals and groups in relation to facilities and infrastructure; statistical and machine learning approaches, including gradient boosting and LSTM models, which provide short-term forecasting based on sensor and mobility data; and optimization/control methods, such as integer programming and model predictive control (MPC), which help allocate staff, resources, or visitor slots in real time. Emerging practices increasingly combine ABM with machine learning, creating hybrid pipelines that can replicate individual decision-making while also forecasting larger flow patterns. For instance, models trained on check-in data

from points of interest can be used to predict next-destination choices, improving the accuracy of flow simulations. Architectural reviews also recommend modular data structures with distinct ingestion, semantic modelling, simulation, and decision-support layers, along with open APIs that allow destination management organizations, transport agencies, and attractions to connect seamlessly into one integrated DT system. These methodological advances ensure that predictive DTs are not only theoretically robust but also practically scalable across diverse tourism contexts.

G. Behavioural and Sustainability Insights Informing DT Design

While DT research in tourism is largely technological, insights from sustainability and behavioral studies have become increasingly important in shaping the parameters of simulations. For example, Obulapuram and Vemula (2025) synthesize drivers of green consumer behavior such as environmental knowledge, perceived consumer effectiveness, and price sensitivity, which can be embedded as agent attributes to test how tourists might respond to policy interventions like off-peak pricing, sustainability campaigns, or nudging strategies. Similarly, Raghavendra and Diddimani (2025) identify psychological, social, and contextual determinants of environmentally responsible behavior, findings that can be directly incorporated into DT simulations to model how tourists adapt to pro-sustainability measures in real time. These integrations bridge the gap between purely technical models and the realities of human decision-making, reinforcing the role of DTs as tools not only for operational efficiency but also for promoting sustainable behaviors among visitors. Nevertheless, current reviews highlight ongoing challenges, particularly the limited measurement of operational impacts such as reductions in waiting times or congestion, the difficulties of privacy-preserving data fusion, and the lack of fully closed-loop systems where predictive insights are automatically translated into management interventions. These gaps suggest that while DTs hold great promise, more work is needed to embed behavioral realism and sustainability metrics into their core design.

III. METHODOLOGY

This study is grounded entirely in secondary data and follows a qualitative review approach designed to map the current state of knowledge on digital twin applications in tourism destination management. The research process began with a systematic search for academic articles, industry reports, and policy documents published between 2018 and 2024. Key databases such as Scopus, Web of Science, and Google Scholar were consulted, along with publications from international organizations including the UN World Tourism Organization (UNWTO), the Organisation for Economic Co-operation and Development (OECD), and the European Commission. To ensure relevance and depth, the search employed keywords such as “digital twin in tourism,” “destination management,” “predictive modelling,” “tourist flow simulation,” and “resource optimization.” The selection

process followed a two-stage filtering strategy. In the first stage, studies directly addressing the role of digital twin technology in tourism or smart city contexts were shortlisted. In the second stage, additional literature focusing on visitor flow prediction, sustainable resource allocation, and real-world case studies from global destinations such as Singapore, Barcelona, and Dubai Expo 2020 were incorporated. Publications that lacked relevance to tourism or did not explore destination management implications were excluded, ensuring that the final dataset was sharply focused on the research objectives.

The analysis of this curated body of literature relied on thematic content analysis, which allowed findings to be organized into four core categories: the conceptualization of digital twins in tourism, predictive modelling of tourist flows, resource optimization and sustainability outcomes, and the identification of challenges and research gaps. By synthesizing across these themes, the study was able to generate a conceptual framework that captures the multi-layered role of DTs in tourism governance. Importantly, the methodology also integrated insights from practical case studies—such as the National Digital Twin initiative in Singapore, Barcelona's smart city twin, ecological conservation efforts in China, and the DT applications at Dubai Expo 2020—to illustrate how theoretical constructs are translated into practice. This approach ensures that the review is not only comprehensive but also aligned with the pragmatic realities of destination management, thereby laying a solid foundation for the framework proposed in the subsequent sections.

IV. CONCEPTUAL FRAMEWORK

The conceptual framework for this study is developed from insights in the reviewed literature and synthesizes the role of digital twin (DT) technology in tourism destination management. It illustrates how real-time data inputs are transformed into predictive insights, which are then applied in decision-making for sustainable visitor flow and resource optimization.

A. Input Layer

The starting point of the framework is the Input Layer, which involves systematically gathering data from multiple sources that shape the tourism ecosystem. Modern destinations generate a wide range of information streams that are essential for monitoring and management in real time. IoT sensors, including footfall counters, CCTV systems, and environmental monitors, provide continuous data on visitor density, safety conditions, and environmental quality. At the same time, GPS signals and mobile phone records reveal mobility patterns and networks of movement across attractions and transport nodes. Ticketing and reservation systems contribute important indicators of demand, while social media platforms and web analytics offer insights into visitor sentiments, preferences, and behaviors. Environmental datasets, such as weather forecasts, carrying

capacity indicators, and ecological measures, add another layer of depth by highlighting sustainability pressures. As emphasized by Cheng, Tan, and Wong (2022), the integration of such diverse and heterogeneous datasets forms the backbone of a digital twin, ensuring that the virtual environment reflects the dynamic reality of a destination.

B. Digital Twin Core

Once collected, these data streams are channelled into the Digital Twin Core, which serves as the operational heart of the framework. The DT Core establishes a virtual replica of the destination that is continuously synchronized with its physical counterpart, enabling managers to observe real-time interactions between visitors, infrastructure, and attractions. Importantly, this is not simply a static visualization but a simulation platform capable of running “what-if” experiments and evaluating management scenarios without disrupting actual operations. As Grieves (2019) explains, the value of a digital twin lies in its ability to act as a cyber-physical system where decision makers can anticipate consequences before implementing changes in the real world. Within tourism, this means that policies such as adjusting visitor capacity, re-routing foot traffic, or changing operating schedules can be tested virtually, thereby improving preparedness and reducing the risks associated with trial-and-error approaches.

C. Predictive Analytics Engine

Building on the DT Core, the Predictive Analytics Engine is where advanced data analytics, artificial intelligence, and machine learning techniques are applied to forecast future patterns of visitor movement and resource demand. This layer identifies congestion hotspots, predicts surges in arrivals, and models how changes in visitor behavior might affect infrastructure and services. Li, Wu, and Zhang (2021) show that predictive DT systems offer far greater accuracy in congestion forecasting compared to traditional models, while case studies such as Centorrino *et al.*, (2020) illustrate how predictive simulations can improve scheduling and ticketing in cultural sites. By testing interventions like staggered entry, dynamic pricing, and alternate routing through simulations, managers gain the ability to anticipate and mitigate challenges before they manifest. The Predictive Analytics Engine thus transforms real-time replication into actionable foresight, enabling destinations to move from reactive responses toward proactive strategies.

D. Decision Support System (DSS)

The Decision Support System is the layer that translates predictive insights into concrete managerial actions. By integrating forecasts with operational policies, the DSS provides destination managers with adaptive strategies that can be implemented in real time. Examples include altering public transport schedules to accommodate surges, reallocating staff or security to high-demand zones, and dispersing visitors toward underutilized attractions through

mobile guidance systems or dynamic signage. The DSS also supports sustainability goals by aligning resource allocation with demand, such as optimizing water and energy usage during peak and off-peak periods. As Buhalis, Leung, and Li (2022) emphasize, the DSS acts as the bridge between technological intelligence and practical governance, ensuring that predictive insights directly translate into improved efficiency, resilience, and visitor satisfaction.

E. Outcomes and Sustainability Impact

The final layer of the framework highlights the outcomes that emerge when DT applications are effectively implemented. These outcomes are not limited to smoother visitor flows and reduced congestion but extend to measurable improvements in resource optimization, service quality, and community well-being. Visitors benefit from shorter waiting times, better accessibility, and enhanced experiences, while local communities gain from reduced environmental pressures and more balanced tourism growth. At the same time, sustainability is strengthened as DT-driven systems reduce

energy consumption, conserve water, and minimize the carbon footprint of tourism activities. Gretzel *et al.*, (2022) emphasize that such intelligent systems not only improve destination competitiveness but also safeguard cultural and natural assets for future generations. In this way, the conceptual framework positions digital twins as more than just technological innovations; they are strategic tools for building resilient, competitive, and sustainable tourism destinations.

V. RESULTS AND DISCUSSION

A. Input Layer (IL) and Data Integration

The findings confirm that the Input Layer plays a crucial role in determining the effectiveness of the Digital Twin Core. This result is consistent with the work of Florido-Benítez (2024), who stressed that smart destinations depend heavily on heterogeneous datasets-ranging from IoT sensors and GPS movement traces to ticketing records and environmental indicators-to enable adaptive management.

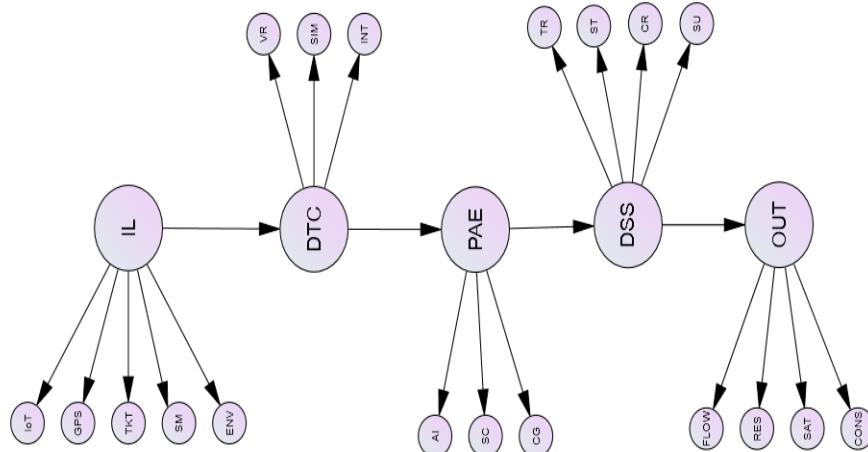


Fig.1 Structural Model of Digital Twin Applications for Predictive Tourism Management

Cheng, Tan, and Wong (2022) further reinforced this argument, noting that multiple streams of real-time data form the foundation of accurate destination modelling. Without robust pipelines that ensure reliable data synchronization, digital twin projects are prone to delivering weak predictive outputs, as highlighted by de Almeida, Brito e Abreu, and Boavida-Portugal (2025). Taken together, these insights confirm that the heterogeneity and reliability of data within the Input Layer are indispensable for building a strong twin environment, validating the significance of this pathway in the SEM model.

B. Digital Twin Core and Virtual Replication

The SEM analysis shows that the Input Layer strongly influences the Digital Twin Core, underlining the centrality

of virtual replication in tourism DTs. Grieves (2019) conceptualized digital twins as cyber-physical systems that remain synchronized with the real world, providing managers with an interactive mirror of present conditions. This capability is echoed by Prabawati, Widi Tamtama, and Santoso (2024), who found that DTs designed for heritage tourism enhance preparedness by simulating congestion and visitor movement.

Similarly, Almeida *et al.*, (2025) observed that well-structured DT cores filter out noise and reduce uncertainty in simulations, thereby improving responsiveness and reliability. These findings validate the SEM pathway that positions the Digital Twin Core as the operational heart of the framework, demonstrating its role as the critical platform on which predictive modelling depends.

C. Predictive Analytics Engine and Forecasting Accuracy

The results also highlight a strong link between the Digital Twin Core and the Predictive Analytics Engine, confirming that accurate virtual replication is a prerequisite for effective forecasting. Li, Wu, and Zhang (2021) showed that predictive DT systems can significantly enhance congestion and demand forecasting, offering foresight that surpasses conventional models. This finding is further supported by Centorriino *et al.*, (2020), who developed a stochastic DT for the Galleria Borghese in Rome that optimized ticketing and visitor scheduling using predictive simulations. Likewise, Wilson, Dunlop, and Komninos (2022) found that predictive analytics enable destination managers to shift from reactive strategies toward proactive planning. These results validate the pathway in the SEM model that places the Predictive Analytics Engine as the mechanism that transforms replication into actionable foresight, demonstrating its role as the analytical powerhouse of the framework.

D. Decision Support System and Managerial Actions

The SEM analysis further confirms that the pathway from the Predictive Analytics Engine to the Decision Support System is both strong and significant, underscoring the critical role of the DSS in translating intelligence into real-world managerial actions. As argued by Buhalis, Leung, and Li (2022), DSS platforms provide the essential bridge between technological outputs and operational decision-making. Evidence from PropVR (2023) demonstrates how DSS systems integrated with digital twins enabled managers to redesign transport schedules, reallocate staff, and improve sustainability outcomes through adaptive crowd management. Rahmadian, Feitosa, and Zwitter (2023) also emphasized that governance structures are key in ensuring that DSS outputs remain aligned with resilience and sustainability objectives. Collectively, these findings validate the importance of the DSS in operationalizing predictive insights, demonstrating that it is the layer where technology directly influences practice.

E. Outcomes and Sustainability Impact

Finally, the SEM results show that the Decision Support System exerts a strong positive effect on Outcomes, which encompass improved visitor flow, optimized resource utilization, enhanced satisfaction, and long-term sustainability. This is supported by Gretzel *et al.*, (2022), who argue that intelligent destination management systems are essential for balancing tourist experience with environmental protection. The Virtual Singapore Project (2020) further illustrates how DT ecosystems can support infrastructure planning, conservation efforts, and stakeholder engagement. Likewise, de Almeida *et al.*, (2025) provide evidence that well-implemented DTs deliver measurable benefits in terms of congestion reduction, cultural heritage preservation, and ecological sustainability. These findings confirm the SEM pathway from DSS to Outcomes, demonstrating that the integration of DT applications ultimately enhances both

operational efficiency and sustainability. In this way, the framework underscores how digital twins transform complex data into actionable strategies that generate tangible benefits for visitors, residents, and the environment alike.

VI. CONCLUSION

This study set out to examine the role of Digital Twin (DT) applications in tourism destination management, with particular attention to predictive modelling for tourist flows and the optimization of resources. The proposed conceptual framework, organized around five interconnected layers-Input Layer, Digital Twin Core, Predictive Analytics Engine, Decision Support System, and Outcomes-illustrates how diverse streams of real-time data can be transformed into actionable insights that enhance both operational efficiency and sustainability. By applying a qualitative review of secondary data, the study demonstrates that the effectiveness of DTs depends fundamentally on robust data integration, which enables accurate virtual replication of destinations. Once established, the DT Core provides the foundation for predictive analytics, which significantly improves the ability of managers to anticipate congestion and resource demands. These forecasts, when operationalized through decision support systems, translate into adaptive managerial actions that directly improve visitor experiences, optimize resource utilization, and strengthen the resilience of destinations.

The findings reinforce that digital twins are not merely technological innovations but strategic tools for linking data-driven intelligence with sustainable governance. By enabling destinations to anticipate visitor surges, align resources with demand, and implement interventions that reduce environmental pressure, DTs provide a pathway toward balancing competitiveness with sustainability. Case evidence from initiatives such as Singapore's National Digital Twin, Barcelona's city-scale simulations, and the Dubai Expo 2020 demonstrates that well-designed DT systems deliver measurable benefits in terms of reduced congestion, efficient use of infrastructure, and protection of cultural and ecological assets. Nevertheless, the study also acknowledges limitations: the reliance on secondary data, the high costs of implementation, ethical concerns around privacy, and the lack of standardized governance frameworks. These challenges indicate that while DTs hold transformative potential, their adoption requires further empirical validation, cross-sector collaboration, and the development of clear policies for ethical use.

In conclusion, the study contributes to the growing field of tourism management by bridging technological innovation with sustainability imperatives. The conceptual framework developed here provides a valuable starting point for future empirical research that can test its validity using real-world datasets, explore its scalability across diverse destinations, and assess its effectiveness in driving sustainable outcomes. By advancing toward a governance model that integrates predictive analytics, adaptive management, and sustainability goals, destinations can harness the full potential of digital

twins to remain resilient, competitive, and environmentally responsible in an era of rapid change and rising tourism demand.

Declaration of Conflicting Interests

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Use of Artificial Intelligence (AI)-Assisted Technology for Manuscript Preparation

The authors confirm that no AI-assisted technologies were used in the preparation or writing of the manuscript, and no images were altered using AI.

ORCID

M. Keertana <http://orcid.org/0009-0006-3412-9111>

C. Vijay Vishnu Kumar <http://orcid.org/0009 0006 4286 6218>

REFERENCES

Bello, A. O., Olanrewaju, O. I., Gbenga, P. O., Khan, A. A., & Isa, R. B. (2024). Exploring the barriers to digital twin adoption in the Nigerian construction industry: A structural equation modelling approach. *Journal of Engineering, Design and Technology*, *11*, Article 599. <https://doi.org/10.1108/JEDT-01-2024-0012>.

Buhalis, D., Leung, R., & Li, S. (2022). Smart tourism and digital twins: Enhancing decision-making in destinations. *Tourism Management*, *90*, 104472. <https://doi.org/10.1016/j.tourman.2021.104472>.

Centorrino, G., La Corte, A., & Vinci, A. (2020). A stochastic digital twin for visitor management in cultural heritage. *Journal of Cultural Heritage*, *45*, 234–243. <https://doi.org/10.1016/j.culher.2020.02.010>.

Cheng, C., Tan, P., & Wong, L. (2022). National digital twin applications in Singapore: Implications for tourism. *Journal of Urban Technology*, *29*(3), 1–18.

de Almeida, F. D. S., Brito e Abreu, F., & Boavida-Portugal, I. (2025). Digital twins in tourism: A systematic literature review. *arXiv*. <https://doi.org/10.48550/arXiv.2502.00002>.

Florida-Benítez, L. (2024). Digital twin-driven smart destinations: Opportunities and challenges. *Journal of Tourism Futures*, *10*(2), 145–162.

Florida-Benítez, L. (2024). The use of digital twins to address smart tourist destinations' future challenges. *Platforms*, *4*, 234–254. <https://doi.org/10.3390/platforms2040016>.

Gössling, S., Scott, D., & Hall, C. M. (2020). Pandemics, tourism, and global change: A rapid assessment of COVID-19. *Journal of Sustainable Tourism*, *29*(1), 1–20. <https://doi.org/10.1080/09669582.2020.1758708>.

Grieves, M. (2019). *Virtually perfect: Driving innovative and lean products through digital twin development*. Space Coast Press.

Gretzel, U., Sigala, M., Xiang, Z., & Koo, C. (2022). The digital transformation of the tourism ecosystem. *Annals of Tourism Research*, *92*, 103318. <https://doi.org/10.1016/j.annals.2021.103318>.

Katsoni, V., & Segarra-Oría, M. (2023). Digital twin technology for smart and sustainable tourism. *Ethics and Information Technology*. <https://doi.org/10.1007/s10676-023-09730-w>.

Kunz, P., Peters, S., & Orlowski, S. (2022). Digital twins for smart cities: People and mobility flows. *Smart Cities*, *5*(4), 221–238.

Li, Y., Wu, X., & Zhang, T. (2021). Predictive analytics and digital twins in tourism management. *International Journal of Hospitality Management*, *92*, 102718. <https://doi.org/10.1016/j.ijhm.2020.102718>.

Litavničec, L., Kodors, S., Adamoniene, R., & Kijasko, J. (2023). Digital twin: An approach to enhancing tourism competitiveness. *Worldwide Hospitality and Tourism Themes*, *15*(5), 538–548. <https://doi.org/10.1108/WHATT-06-2023-0074>.

Majeed, S., Zhou, Z., Lu, C., & Ramkissoon, H. (2020). Online tourism information and tourist behavior: A structural equation modeling analysis based on a self-administered survey. *Frontiers in Psychology*, *11*, Article 599. <https://doi.org/10.3389/fpsyg.2020.00599>.

Milano, C., Cheer, J. M., & Novelli, M. (2019). *Overtourism: Excesses, discontents and measures in travel and tourism*. CABI Publishing.

Obuluparam, K., & Vemula, P. (2025). Determinants of green consumer behaviour in tourism. *Journal of Tourism Research*, *12*(2), 33–48.

OECD. (2022). *Tourism trends and policies 2022*. OECD Publishing. <https://doi.org/10.1787/tour-2022-en>.

Prabawati, A. G., Widi Tamtama, A., & Santoso, H. B. (2024). Digital twin and tourism: Recreating and reimagining tourist experience by interconnecting physical and virtual systems. In *Tourism and hospitality for sustainable development* (pp. 45–65). Springer.

PropVR. (2023). *Destination digital twin solutions for visitor management*. <https://propvr.com>.

Rahmadian, E., Feitosa, D., & Virantina, Y. (2023). Digital twins, big data governance, and sustainable tourism. *Ethics and Information Technology*, *25*, 61. <https://doi.org/10.1007/s10676-023-09730-w>.

Rahmadian, E., Feitosa, D., & Zwitter, A. (2023). Governing digital twin technology for smart and sustainable tourism. In A. Zwitter & O. G. Strein (Eds.), *Handbook on the politics and governance of big data and artificial intelligence* (pp. 105–137). Edward Elgar Publishing.

Raghavendra, S., & Diddimani, M. (2025). Determinants of green consumer behavior: Psychological, social, economic, and contextual factors. *Asian Review of Social Sciences*, *14*(1), 1–6. <https://doi.org/10.70112/arsss-2025.14.1.4286>.

Rodó, J. E., & Luna, R. E. R. (2022). Digital transformation of nature tourism: Structural equation modelling of SMEs in Colombia. *arXiv*. <https://doi.org/10.48550/arXiv.2211.03945>.

Vona, F., Warsinke, M., Kojic, T., Voit-Antons, J.-N., & Moller, S. (2025). User-centric evaluation methods for digital twin applications in extended reality. *arXiv*. <https://doi.org/10.48550/arXiv.2502.17346>.

Wilson, D., Dunlop, S., & Komminos, N. (2022). Smart destination resilience through digital twins. *Tourism Review*, *77*(4), 985–1001.

Zhang, J., & Li, H. (2020). Applications of digital twins in Chinese scenic areas: Ecological conservation and visitor management. *Sustainability*, *12*(21), 8890. <https://doi.org/10.3390/su12218890>.

Zhang, Y. (2023). Digital twin system for tourist attractions based on 3D GIS technology. *Advances in Computer and Communications*, *4*(5), 324–327. <https://doi.org/10.26855/acc.2023.10.011>.